Coefficient Quantization for Frames in Banach Spaces
نویسندگان
چکیده
Let (ei) be a fundamental system of a Banach space. We consider the problem of approximating linear combinations of elements of this system by linear combinations using quantized coefficients. We will concentrate on systems which are possibly redundant. Our model for this situation will be frames in Banach spaces.
منابع مشابه
Invariance of Fréchet frames under perturbation
Motivating the perturbations of frames in Hilbert and Banach spaces, in this paper we introduce the invariance of Fr'echet frames under perturbation. Also we show that for any Fr'echet spaces, there is a Fr'echet frame and any element in these spaces has a series expansion.
متن کاملOn X ̃-frames and conjugate systems in Banach spaces
The generalization of p-frame in Banach spaces is considered in this paper. The concepts of an $tilde{X}$-frame and a system conjugate to $tilde{X}$-frame were introduced. Analogues of the results on the existence of conjugate system were obtained. The stability of $tilde{X}$-frame having a conjugate system is studied.
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملBanach Pair Frames
In this article, we consider pair frames in Banach spaces and introduce Banach pair frames. Some various concepts in the frame theory such as frames, Schauder frames, Banach frames and atomic decompositions are considered as special kinds of (Banach) pair frames. Some frame-like inequalities for (Banach) pair frames are presented. The elements that participant in the construction of (Ba...
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007